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Abstract
Recently we developed a new algorithm for a fast and accurate numerical
evaluation of three-centre nuclear attraction integrals over Slater-type functions,
the results obtained were very satisfactory. Now, it is shown that this new
algorithm can also be applied to hybrid and three-centre two-electron Coulomb
integrals over Slater-type functions. These integrals, which are numerous,
are very difficult to evaluate to a high accuracy, because of the presence
of spherical Bessel functions and hypergeometric series in the integrands.
We have proved that the integrands that occur in the analytic expressions of
the integrals under consideration satisfy all the conditions to apply the SD̄

approach. The hypergeometric functions which occur in the semi-infinite
integrals can be expressed as a finite expansion and the semi-infinite integrals
involving the spherical Bessel functions can be transformed into semi-infinite
integrals involving the simple sine function.

The numerical results obtained with linear and non-linear systems illustrate
clearly a further improvement of accuracy and a substantial reduction in
calculation times. Comparisons with existing codes, STOP developed by
Bouferguene et al (1996 Int. J. Quantum Chem. 57 801) and ADGGSTNGINT
developed by Rico et al (1997 Comp. Phys. Commun. 105 216), are listed.

PACS numbers: 02.70.Ns, 02.60.Jh, 31.15.Qg

1. Introduction

This paper continues in the series of previous studies [1–4], concerning the development of a
rapid and accurate evaluation of hybrid and three-centre two-electron Coulomb integrals over
Slater-type functions (STFs) [5, 6] to a high pre-determined accuracy for molecular electronic
structure calculations. The STFs can be expressed as finite linear combinations of the so-called
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B functions [7–9]. These B functions have a much more complicated mathematical structure
than STFs, but they have much more appealing properties in multicentre integrals [8–12] and
their Fourier transforms are of exceptional simplicity [12, 13].

It is well known that the basis set of B functions is well adapted to the Fourier
transform method [14–16], which allowed analytic expressions to be developed for multicentre
bielectronic integrals [15, 16]. These analytic expressions are very difficult to evaluate because
of the presence of two-dimensional integral representations. The inner x semi-infinite integrals
are very oscillatory because of the presence of spherical Bessel functions and hypergeometric
series in the integrands. We have shown [17] that these hypergeometric series can be expressed
as finite expansions and that the integrands of interest satisfy fourth-order linear differential
equations of the form required to apply the non-linear D̄ transformation [18, 19]. We also
showed the superiority of this transformation over the alternatives using Gauss–Laguerre
quadrature, the ε-algorithm of Wynn [21] or Levin’s u transform [22], in evaluating this
kind of integrals. Unfortunately, the calculation required by these non-linear transformations
presents severe numerical and computational difficulties.

In previous work [23, 24], we obtained the approximation D̄(2)
n for the semi-infinite

integrals under consideration by using a second-order differential equation satisfied by the
integrands and which was obtained by Sidi [18, 20]. This led to great simplifications in the
application of the D̄ transformation.

Recently, we developed a very efficient, rapid and simple algorithm for the numerical
evaluation of three-centre nuclear attraction integrals over STFs [4]. In the present work, we
showed that this new algorithm can also be applied to the hybrid and three-centre two-electron
Coulomb integrals, which are shown suitable to apply the SD̄ approach [3], which consists on
transforming the semi-infinite integrals involving spherical Bessel functions into semi-infinite
integrals involving the simple sine function. The strong oscillations of the integrands are thus
reduced and as it is well known, the numerical integration of oscillatory integrands is very
difficult [25, 26]. Once the semi-infinite integral involving the spherical Bessel function is
transformed into a semi-infinite integral involving the sine function, we apply the non-linear
D̄ transformation using Cramer’s rule as suggested by Sidi [18].

The aim of this work is to further simplify the application of this method as well as
to reduce the calculation times keeping the same high accuracy. Recurrence relations are
developed and numerical and computational studies are presented and discussed.

Numerical results were obtained for H2O and C2H4 molecules to show the superiority
of the new algorithm for an efficient and rapid numerical evaluation of the integrand under
consideration. Comparisons with the existing codes, STOP (Slater-type orbital package)
developed by Bouferguene et al [27] and ADGGSTNGINT, using STOnG (STFs expressed
as a combination of n GTFs), developed by Rico et al [28], are also listed.

2. General definitions and properties

Let A,B and C be arbitrary points of the Euclidian space E3 and let O be the origin of the
fixed coordinate system. The three-centre two-electron Coulomb integral over STFs is given
by

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�R, �R′

[
χ

m1
n1,l1

(ζ1, �R − −→
OA)

]∗[
χ

m3
n3,l3

(ζ3, �R′ − −→
OB)

]∗

× 1

| �R − �R′|χ
m2
n2,l2

(ζ2, �R − −→
OA)χ

m4
n4,l4

(ζ4, �R′ − −→
OC) d �R d �R′. (1)

The hybrid integral, Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

, corresponds to the case where B = A. By performing a



A new algorithm for accurate and fast numerical evaluation of hybrid 11269

translation of vector
−→
OA, we can re-write Kn2l2m2,n4l4m4

n1l1m1,n3l3m3
as

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�r,�r ′

[
χ

m1
n1,l1

(ζ1, �r)]∗ [
χ

m3
n3,l3

(ζ3, �r ′ − ( �R3 − �R4))
]∗

× 1

|�r − �r ′ − �R4|
χ

m2
n2,l2

(ζ2, �r)χm4
n4,l4

(ζ4, �r ′) d�r d�r ′ (2)

where �r = �R − −→
OA, �r ′ = �R′ − −→

OC, �R3 = −→
AB and �R4 = −→

AC. In the case of the hybrid

integral, �R3 = −→
AB = �O.

The following arguments are also applied to hybrid integrals.
The Slater-type functions (STFs) are defined in normalized form according to the

following relationship [5, 6]:

χm
n,l(ζ, �r) =

√
(2ζ )2n+1

(2n)!
rn−1 e−ζ rYm

l (θ�r , ϕ�r ) (3)

where n, l,m are the quantum numbers, and Ym
l (θ, ϕ) stands for the surface spherical harmonic

[29].
The Slater-type orbitals can be expressed as finite linear combinations of B functions [8]:

χm
n,l(ζ, �r) =

n−l∑
p=p̃

(−1)n−l−p 22p+2l−n(l + p)!

(2p − n + l)!(n − l − p)!
Bm

p,l(ζ, �r) (4)

where

p̃ =
{

n−l
2 if n − l is even

n−l+1
2 if n − l is odd.

(5)

The B functions are defined as follows [8, 9]:

Bm
n,l(ζ, �r) = (ζ r)l

2n+l (n + l)!
k̂n− 1

2
(ζ r)Ym

l (θ�r , ϕ�r ) (6)

where k̂n+ 1
2
(z) stands for the reduced Bessel function [7, 9]. This function satisfies the

following recurrence relation [7]:

k̂n+ 1
2
(z) = (2n − 1) k̂n− 1

2
(z) + z2k̂(n−1)− 1

2
(z). (7)

A useful property satisfied by k̂n+ 1
2
(z) is given by:(

d

z dz

)m
[

k̂n+ 1
2
(z)

z2n+1

]
= (−1)m

k̂n+m+ 1
2
(z)

z2(n+m)+1
. (8)

The Fourier transform B̄m
n,l(ζ, �p) of Bm

n,l(ζ, �r) is given by [12, 13]

B̄m
n,l(ζ, �p) =

√
2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Ym

l (θ �p, ϕ �p). (9)

The spherical Bessel function jl(x) of order l ∈ N is defined by [30]

jl(x) = (−1)lxl

(
d

x dx

)l ( sin(x)

x

)
. (10)

The spherical Bessel function jl(x) satisfies the recurrence relation [30]:

xjl−1(x) + xjl+1(x) = (2l + 1)jl(x). (11)

For the following, we write jn

l+ 1
2

with n = 1, 2, . . . for the successive positive zeros of

jl(x). j 0
l+ 1

2
are assumed to be 0.
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The hypergeometric function is given by [30]

2F1(α, β; γ ; x) =
+∞∑
r=0

(α)r(β)rx
r

(γ )rr!
(12)

where (α)n represents the Pochhammer symbol [30].
The infinite series (12) converge only for |x| < 1, and they converge quite slowly if |x| is

slightly less than one. The corresponding functions nevertheless are defined in a much larger
subset of the complex plane, including the case |x| > 1.

Note that if α or β in the infinite series (12) is a negative integer, then the hypergeometric
function will be reduced to a finite sum.

By using equation (4), we can express Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

and Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

as finite linear
combinations of integrals involving B functions. These integrals over B functions are given by

K̃n2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�r,�r ′

[
B

m1
n1,l1

(ζ1, �r)]∗[
B

m3
n3,l3

(ζ3, �r ′ − ( �R3 − �R4))
]∗

× 1

|�r − �r ′ − �R4|
B

m2
n2,l2

(ζ2, �r)Bm4
n4,l4

(ζ4, �r ′) d�r d�r ′. (13)

The hybrid integral will be re-written as

H̃n2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫

�r,�r ′

[
B

m1
n1,l1

(ζ1, �r)]∗[
B

m3
n3,l3

(ζ3, �r ′ + �R4)
]∗

× 1

|�r − �r ′ − �R4|
B

m2
n2,l2

(ζ2, �r) B
m4
n4,l4

(ζ4, �r ′) d�r d�r ′. (14)

By substituting the Fourier integral representation of the Coulomb operator [31] in equations
(13), we obtain

K̃n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
�x

ei�x. �R4

x2

〈
B

m1
n1,l1

(ζ1, �r)∣∣e−i�x.�r ∣∣Bm2
n2,l2

(ζ2, �r)〉�r
× 〈

B
m4
n4,l4

(ζ4, �r ′)
∣∣e−i�x.�r ′ ∣∣Bm3

n3,l3
(ζ3, �r ′ − ( �R3 − �R4))

〉∗
�r ′d�x. (15)

In [3], we showed that the term
〈
B

m1
n1,l1

(ζ1, �r)∣∣e−i�x.�r ∣∣Bm2
n2,l2

(ζ2, �r)〉�r in the above equations, has
an analytic expression involving a hypergeometric function which is given by

2F1

(
l − k − l1 − l2 + 1

2
,
l − k − l1 − l2

2
+ 1; l +

3

2
; −x2

(ζ1 + ζ2)2

)
(16)

where k and l are positive integers. We also showed that the above hypergeometric function
is reduced to a finite expansion because of the fact that one of the two first arguments of the
hypergeometric function is a negative integer. The Fourier transform method allowed analytic
expression to be developed for the integrals over �r ′ which occurs in equation (15) [15, 16]:〈

B
m4
n4,l4

(ζ4, �r ′)
∣∣e−i�x.�r ′′ ∣∣Bm3

n3,l3
(ζ3, �r ′ − ( �R3 − �R4))

〉∗
�r ′ .

The above results led to an analytic expression for the three-centre two-electron Coulomb
integral over B functions, which is given by [3]

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)3√πζ
l1
1 ζ

l2
2 ζ

2n3+l3−1
3 ζ

2n4+l4−1
4

× (2l3 + 1)!!(2l4 + 1)!!(n3 + l3 + n4 + l4 + 1)!

2l1+l2+1(n1 + l1)!(n2 + l2)!(n3 + l3)!(n4 + l4)!

×
l1+l2∑

l=lmin,2

(−i)l

22n1+2n2+l
〈l2m2|l1m1|lm2 − m1〉
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×
n1+n2∑
k=2

k2∑
i=k1

[
2k(2n1 − i − 1)!(2n2 − k + i − 1)!ζ i−1

1 ζ k−i−1
2

(i − 1)!(n1 − i)!(k − i − 1)!(n2 − k + i)!

]

×
l4∑

l′4=0

l′4∑
m′

4=−l′4

il4+l′4(−1)l
′
4
〈l4m4|l4 − l′4m4 − m′

4|l′4m′
4〉

(2l′4 + 1)!![2(l4 − l′4) + 1]!!

×
l3∑

l′3=0

l′3∑
m′

2=−l′3

il3+l′3
〈l3m3|l3 − l′3m3 − m′

3|l′3m′
3〉

(2l′3 + 1)!![2(l3 − l′3) + 1]!!

×
l′3+l′4∑

l′=l′min,2

〈l′4m′
4|l′3m′

3|l′m′
4 − m′

3〉Rl′
34Y

m′
3−m′

4
l′ (θ �R34

, ϕ �R34
)

×
l3−l′3+l4−l′4∑
l34=l′′min,2

〈l3 − l′3m3 − m′
3|l4 − l′4m4 − m′

4|l34m34〉

×
l+l34∑

λ=λmin,2

iλ〈lm2 − m1|l34(m3 − m′
3) − (m4 − m′

4)|λµ〉

×
�l∑

j=0

(
�l

j

)
(−1)j

2n3+n4+l3+l4−j+1(n3 + n4 + l3 + l4 − j + 1)!

× ζ nk−l−1
s �(k + l1 + l2 + l + 1)

�(l + 3
2 )

η′∑
r=0

(−1)r

(
η

2

)
r

(
η+1

2

)
r(

l + 3
2

)
r
r!ζ 2r

s

×
∫ 1

s=0
sn3+l3+l4−l′4(1 − s)n4+l4+l3−l′3Y

µ
λ (θ�v, ϕ�v)

×
[∫ +∞

0

xnx[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx

]
ds (17)

where

k1 = max(1, k − n2), k2 = min(n1, k − 1), ζs = ζ1 + ζ2

nx = l3 − l′3 + l4 − l′4 + 2r + l, nk = k + l1 + l2

nγ = 2(n3 + l3 + n4 + l4) − (l′3 + l′4) − l′ + 1

η = l − k − l1 − l2 + 1,�l = l3+l4−l′
2

η′ = − η

2 if η is even, otherwise η′ = − η+1
2

�v = (1 − s)( �R3 − �R4) + �R4 = (1 − s) �R34 + �R4

µ = (m2 − m1) − (m3 − m′
3) + (m4 − m′

4)

[γ (s, x)]2 = (1 − s)ζ 2
4 + sζ 2

3 + s(1 − s)x2

ν = n3 + n4 + l3 + l4 − l′ − j + 1
2

m34 = (m3 − m′
3) − (m4 − m′

4)

〈l1m1|l2m2|l3m3〉 stands for the Gaunt coefficients [34–36]

v and R34 stand for the modulus of �v and �R34, respectively.
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Figure 1. The integrand Fs (x) of K̃(s) (18). s = 0.998, ν = 13/2, nγ = 5, nk = 2, nx = 4,

λ = 4, R34 = 2.0, ζs = 2.0 and ζ3 = ζ4 = 1.0 (v = 49.996).

The analytic expression of hybrid integrals over B functions can be obtained by replacing
R3 by 0 in the above equation.

The numerical evaluation of the above analytic expression turned out to be very difficult.
This is due to the presence of the two-dimensional integral representations. The inner x
semi-infinite integrals, which will be referred to as K̃(s), are very oscillatory because of the
spherical Bessel functions jλ(vx) in the integrands (see figure 1). Note that when the values
of λ and v are large and when s is close to 0 or 1 the oscillations become very strong, thus the
numerical evaluation of the two-dimensional integrals becomes very difficult.

The semi-infinite integrals which occur in the expression of hybrid integrals will be
referred to as H̃(s).

The semi-infinite integral K̃(s) which occurs in equation (17) can be transformed into an
infinite series of integrals as follows:

K̃(s) =
∫ +∞

0

xnx

[ζ 2
s + x2]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx (18)

=
+∞∑
n=0

∫ jn+1
λ,v

jn
λ,v

xnx[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx (19)

where j 0
λ,v is assumed to be 0 and jn

λ,v = jn

λ+ 1
2

/
v, n = 1, 2, . . . which are the successive

positive zeros of jλ(vx).
For the following, the integrand of K̃(s) will be referred to as FK,s(x) and the integrand

of H̃(s) will be referred to as FH,s(x).
In the case when v → 0, the semi-infinite integral (18) vanishes if λ 
= 0, since

limα→0 jλ(α) = 0 and the integrand is an exponential decreasing function (converges to 0
when x → +∞), and if λ = 0, we used the fact that j0(α) = sin(α)

α
→ 1 when α → 0 and the

fact that the integrand is exponentially decreasing function, to obtain the following equation:

K̃(s) ≈
∫ +∞

0

xnx[
ζ 2
s + x2

]nk

k̂ν[R2γ (s, x)]

[γ (s, x)]nγ
dx. (20)
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For the evaluation of the above semi-infinite integral, we used Gauss–Laguerre quadrature
of order 64.

The infinite series (19) will be used for computing values of K̃(s) with a certain number
of correct decimals. Unfortunately, as it can be seen from tables 2, 4 and 6, the use of this
approach is very time consuming when the value of v and λ are large and when s is close to 0
or 1.

It is shown [32, 33] that the use of Gauss–Laguerre quadrature even to a high order gives
inaccurate results in the regions where s is close to 0 or 1 (in these regions the asymptotic
behaviour of the integrand cannot be represented by a function of the form e−αxjλ(x)).

In [17], we demonstrated that the integrands FK,s(x) and FH,s(x) satisfy fourth-
order linear differential equations of the form required to apply the non-linear D and D̄

transformations [18, 19]. These two transformations are probably the most effective general
approaches for increasing the rate of convergence of semi-infinite oscillatory integrals whose
integrands satisfy linear differential equations with coefficients having asymptotic expansions
in inverse powers of their argument x as x → +∞. The numerical results obtained for
the semi-infinite integrals under consideration were very satisfactory compared with other
alternatives namely the Gauss–Laguerre quadrature, the epsilon algorithm of Wynn and
Levin’s u transform. The calculation of the approximation D̄(4)

n , which converges very
quickly to the exact value of the integral as n becomes large, is obtained by solving a set
of linear equations of order (3n + 1), where the computation of the successive derivatives
of the integrand and its successive positive zeros are necessary. This is much time
consuming.

In previous work [23, 24], we presented the approximation D̄(2)
n that was obtained by

applying D̄ with a second-order differential equation [18, 20]. Second-order differential
equations were developed for the integrands FK,s(x) and FH,s(x) using practical properties
of spherical Bessel functions and asymptotic power series in the sense of Poincaré [37]. The
approximation D̄(2)

n is obtained by solving linear system of order (n + 1) and where it is not
necessary to evaluate the successive derivatives of the integrands (only the first derivative of
the spherical Bessel function is required). The numerical results obtained using this approach
showed the substantial gain in the calculation times keeping the high accuracy. The main
difficulty of this approach is due to the fact that it is still necessary to compute the successive
zeros of the spherical Bessel function. Note that it is still required to compute a method to
solve the linear system for calculating the approximation D̄(2)

n .
Recently [3], we showed that FK,s(x) and FH,s(x) satisfy all the condition to apply the

SD̄ method, which consists in replacing the spherical Bessel in the integrands by the simple
sine function and then by applying the non-linear D̄ transformation. The semi-infinite integral
K̃(s) can be re-written as [3]

K̃(s) = 1

vλ+1

∫ +∞

0

((
d

x dx

)λ
[

xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

])
sin(vx) dx (21)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π

v

nπ
v

((
d

x dx

)λ
[

xnx+λ−1[
ζ 2
s + x2]

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

])
sin(vx) dx. (22)

A similar formula was developed for the semi-infinite integral H(s) [3].
For the following, the integrand of the above semi-infinite integral will be referred to as

F̃K,s(x). As it can be seen from figures 1 and 2, the oscillations of the integrand FK,s(x)

involving spherical Bessel function are stronger than the oscillations of the integrand F̃K,s(x)
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Figure 2. The integrand F̃s (x) of K̃(s) (21). s, ν, nγ , nk, nx, λ, R34, ζs , ζ3 and ζ4 are given in
figure 1.

Table 1. Values with 15 correct decimals of K̃(s) (18) obtained using the infinite series with the
sine function (22) (s = 0.240(−2))a.

ν nγ nk nx λ ζs ζ3 ζ4 R34 nmax K̃(s)nmax Time

5/2 1 2 0 0 4.0 1.5 0.5 2.5 1245 0.549 128 278 838(−3) 11.85
5/2 1 2 1 0 2.0 2.0 1.5 2.0 1260 0.424 640 684 563(−4) 10.96
9/2 4 3 3 3 2.0 1.5 0.5 2.5 482 0.700 836 644 746(−4) 10.89
13/2 5 2 4 4 2.0 1.0 1.0 2.0 642 0.351 661 145 091(−3) 15.29
13/2 11 2 4 4 2.0 1.0 1.0 2.0 714 0.351 661 145 092(−3) 17.14
13/2 13 2 6 6 2.0 1.0 1.0 2.0 361 0.151 074 181 930(−4) 9.15
15/2 6 2 4 4 2.0 2.0 1.5 2.0 835 0.207 548 974 232(−3) 20.23
21/2 9 2 5 5 2.0 2.0 1.5 2.0 1045 0.559 070 180 641(−1) 28.05
17/2 10 3 3 3 3.0 1.5 1.0 2.5 570 0.470 570 654 794(−1) 13.03

a Numbers in parentheses represent powers of 10.

involving the sine function. Note that the above infinite series converges faster than the infinite
series given by equation (19) (see tables 1–6).

Practical properties of the sine function allowed the use of Cramer’s rule, as suggested
by Levin [22], for calculating the approximation of the above semi-infinite integrals. If we let
the functions G(x) and F(x) be defined as


G(x) =

(
d

x dx

)λ
[

xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

]

F(x) =
∫ x

0
G(t) sin(vt) dt

(23)

then the approximation of K̃(s) is given by [3]

SD̄(2,j)
n = 1

vλ+1

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/[
x2

i+jG(xi+j )
]

∑n+1
i=0

(
n+1
i

)
(1 + i + j)n

/[
x2

i+jG(xi+j )
] (24)

where xl = (l + 1)
π

v
for l = 0, 1, . . ..
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Table 2. Evaluation of K̃(s) (18) (s = 0.240(−2))a.

nmax K̃(s)a Errora Time n K̃(s)b Errorb Time

1245 0.549 128 2788(−3) 0.22(−18) 12.20 6 0.549 128 2788(−3) 0.13(−13) 0.09
1260 0.424 640 6846(−4) 0.18(−18) 12.14 3 0.424 640 8618(−4) 0.18(−10) 0.04
1773 0.700 836 6447(−4) 0.37(−16) 22.82 18 0.700 836 4215(−4) 0.22(−10) 0.45
4568 0.351 661 1451(−3) 0.14(−13) 58.12 20 0.351 661 1239(−3) 0.21(−10) 0.53
2632 0.351 661 1451(−3) 0.19(−13) 33.84 20 0.351 661 1380(−3) 0.71(−11) 0.54
3323 0.151 074 1808(−4) 0.11(−12) 44.17 15 0.151 074 3054(−4) 0.12(−10) 0.42
5152 0.207 548 9742(−3) 0.38(−13) 65.76 21 0.207 548 9912(−3) 0.17(−10) 0.53
6629 0.559 070 1846(−1) 0.39(−09) 89.96 23 0.559 070 1806(−1) 0.65(−11) 0.65
1256 0.470 570 6548(−1) 0.32(−13) 16.89 22 0.470 570 6548(−1) 0.41(−11) 0.51

a ν, nγ , nk, nx , λ, ζs , ζ3, ζ4 and R34 are given in table 1. The values K̃(s)a were obtained using the infinite series

with spherical Bessel function (19). The values K̃(s)b were obtained using SD̄
(2,0)
n .

Table 3. Values with 15 correct decimals of K̃(s) (18) obtained using the infinite series with the
sine function (22) (s = 0.998).

ν nγ nk nx λ ζs ζ3 ζ4 R34 nmax K̃(s)nmax Time

5/2 1 2 0 0 4.0 1.5 0.5 2.5 1301 0.496 748 720 573(−4) 12.26
5/2 1 2 1 0 2.0 2.0 1.5 2.0 1393 0.153 899 211 686(−4) 12.23
9/2 4 3 3 3 2.0 1.5 0.5 2.5 307 0.348 864 079 545(−6) 6.79
13/2 5 2 4 4 2.0 1.0 1.0 2.0 724 0.286 993 071 501(−3) 17.28
13/2 11 2 4 4 2.0 1.0 1.0 2.0 772 0.286 993 071 502(−3) 18.50
13/2 13 2 6 6 2.0 1.0 1.0 2.0 405 0.113 667 442 373(−4) 10.28
15/2 6 2 4 4 2.0 2.0 1.5 2.0 471 0.241 572 463 234(−4) 11.64
21/2 9 2 5 5 2.0 2.0 1.5 2.0 754 0.285 406 859 358(−2) 20.90
17/2 10 3 3 3 3.0 1.5 1.0 2.5 576 0.484 271 561 421(−3) 13.09

Table 4. Evaluation of K̃(s) (18) (s = 0.998)a.

nmax K̃(s)a Errora Time n K̃(s)b Errorb Time

1301 0.496 748 7206(−4) 0.47(−19) 12.56 5 0.496 748 6922(−4) 0.28(−11) 0.06
1393 0.153 899 2117(−4) 0.11(−18) 13.60 3 0.153 899 2578(−4) 0.46(−11) 0.06
1922 0.348 864 0795(−6) 0.41(−17) 24.59 4 0.348 864 6250(−6) 0.55(−12) 0.12
5180 0.286 993 0715(−3) 0.21(−13) 65.90 20 0.286 993 0806(−3) 0.91(−11) 0.53
2981 0.286 993 0715(−3) 0.19(−13) 38.32 20 0.286 993 0809(−3) 0.94(−11) 0.53
3792 0.113 667 4440(−4) 0.17(−12) 50.40 14 0.113 667 8632(−4) 0.42(−10) 0.40
5801 0.241 572 4632(−4) 0.70(−14) 74.40 4 0.241 572 7508(−4) 0.29(−10) 0.14
7501 0.285 406 8463(−2) 0.13(−10) 102.23 21 0.285 406 8613(−2) 0.20(−10) 0.65
1425 0.484 271 5614(−3) 0.15(−14) 19.10 20 0.484 271 5491(−3) 0.12(−10) 0.46

a ν, nγ , nk, nx , λ, ζs , ζ3, ζ4 and R34 are given in table 3. The values K̃(s)a were obtained using the infinite series

with spherical Bessel function (19). The values K̃(s)b were obtained using SD̄
(2,0)
n .

3. The development of the algorithm

As it can be seen from (24), it is necessary for the calculation to compute the function G(x)

(23). With the help of equation (8) and the fact that d
dx

= dz
dx

d
dz

, one can easily show that if
nγ = 2ν then for j ∈ N:(

d

x dx

)j
[

k̂ν[R34γ (s, x)]

[γ (s, x)]2ν

]
= (−1)j sj (1 − s)j

k̂ν+j [R34γ (s, x)]

[γ (s, x)]2(ν+j)
(25)
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Table 5. Values with 15 correct decimals of the semi-infinite integral H̃(s), that occurs in
the analytic expression of hybrid integrals (H̃(s) corresponds to the case where R3 = 0 in
equation (18)). The infinite series with the sine function was used (s = 0.998).

ν nγ nk nx λ ζs ζ3 ζ4 R4 nmax H̃(s)nmax Time

7/2 1 2 1 0 1.0 1.0 1.5 5.5 152 0.700 421 821 682(−1) 1.37
7/2 1 2 2 0 1.0 1.5 2.5 5.5 178 0.620 224 972 816(−3) 1.60
7/2 3 3 2 0 1.0 1.5 1.5 5.5 104 0.452 489 553 319(−3) 1.01
7/2 7 2 1 1 1.0 1.0 1.0 5.5 96 0.863 816 354 491(−1) 1.75
9/2 4 3 3 1 1.0 2.5 1.5 3.5 105 0.144 952 803 542(−2) 2.99
9/2 9 3 3 2 1.0 1.5 1.0 5.0 78 0.192 335 487 262(−2) 1.57
17/2 11 5 5 3 1.0 2.0 1.5 8.0 65 0.143 975 740 932(−2) 1.54
17/2 17 5 6 4 1.0 1.5 1.0 9.0 72 0.712 561 962 830(−2) 1.73

Table 6. Evaluation of H̃(s) (18) (s = 0.998)a.

nmax H̃(s)a Errora Time n H̃(s)b Errorb Time

153 0.700 421 8217(−1) 0.00(+00) 1.50 9 0.700 421 8217(−1) 0.62(−12) 0.12
179 0.620 224 9728(−3) 0.43(−18) 1.76 8 0.620 224 9719(−3) 0.93(−12) 0.10
105 0.452 489 5533(−3) 0.22(−18) 1.07 7 0.452 489 5511(−3) 0.22(−11) 0.10
110 0.863 816 3545(−1) 0.35(−15) 1.18 9 0.863 816 3545(−1) 0.47(−12) 0.18
124 0.144 952 8035(−2) 0.80(−15) 1.45 7 0.144 952 8037(−2) 0.15(−11) 0.14
104 0.192 335 4873(−2) 0.74(−15) 1.31 10 0.192 335 4870(−2) 0.28(−11) 0.21
117 0.143 975 7409(−2) 0.18(−16) 1.57 13 0.143 975 7405(−2) 0.45(−11) 0.34
128 0.712 561 9628(−2) 0.84(−15) 1.75 12 0.712 561 9625(−2) 0.34(−11) 0.31

a ν, nγ , nk, nx , λ, ζs , ζ3, ζ4 and R4 are given in table 5. The values H̃(s)a were obtained using the infinite series with

spherical Bessel function (19). The values H̃(s)b were obtained using SD̄
(2,0)
n .

and for nγ < 2ν, we obtain(
d

x dx

)j
[

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

]
= sj (1 − s)j

[γ (s, x)]nγ +2j

j∑
i=0

(
j

i

)
(−1)j−i (2ν − nγ )!!

(2ν − nγ − 2i)!!

× k̂ν+j−i[R34γ (s, x)] (26)

where the double factorial is defined by

(2k)!! = 2 × 4 × 6 × · · · × (2k) = 2kk!

(2k + 1)!! = 1 × 3 × 5 × · · · × (2k + 1) = (2k + 1)!

2kk!
0!! = 1.

Using Leibnitz formulae and the above equations, we obtain after some algebraic
operations:(

d

x dx

)λ
(

xnx+λ−1[
ζ 2
s + x2

]nk

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

)
=

λ∑
i=0

i∑
j=0

(
λ

i

)(
i

j

)
(nx + λ − 1)!!

(nx + λ − 1 − 2i)!!

× (−2)i−j (nk)i−j

xnx+λ−1−2i[
ζ 2
s + x2

]nk+i−j

(
d

x dx

)λ−i
[

k̂ν[R34γ (s, x)]

[γ (s, x)]nγ

]
(27)

where (nk)α stands for the Pochhammer symbol.
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As it can be seen from equations (25)–(27), the calculation of G(x) does not present any
computation difficulties.

For the computation of equation (24), we used the following procedure:
Let A

(2,j)

k and B
(2,j)

k be defined by{
A

(2,j)

k = ∑k+1
i=0

(
k+1
i

)
(1 + i + j)kF (xi+j )

/[
x2

i+jG(xi+j )
]

B
(2,j)

k = ∑k+1
i=0

(
k+1
i

)
(1 + i + j)k

/[
x2

i+jG(xi+j )
]
.

(28)

Equation (24) can now be re-written as

SD̄
(2,j)

k = 1

vλ+1

A
(2,j)

k

B
(2,j)

k

k = 0, 1, 2, . . . . (29)

Let Uk
i and V k

i be the ith terms of the finite sum A
(2,j)

k and B
(2,j)

k , respectively. It is shown [4]
that A

(2,j)

k and B
(2,j)

k satisfy the following recurrence relation:


A
(2,j)

k+1 = ∑k+1
i=0

(k+2)

(k+2−i)
(1 + i + j)Uk

i + Uk+1
k+2

B
(2,j)

k+1 = ∑k+1
i=0

(k+2)

(k+2−i)
(1 + i + j)V k

i + V k+1
k+2 .

(30)

In previous work, we demonstrated that from the above equations, it follows that SD̄
(2,j)
n ,

which is given by equation (24), satisfies to the following relation [4]:

SD̄
(2,j)

k+1 = 1

vλ+1

∑k+1
i=0

(k+2)

(k+2−i)
(1 + i + j)Uk

i + Uk+1
k+2∑k+1

i=0
(k+2)

(k+2−i)
(1 + i + j)V k

i + V k+1
k+2

. (31)

Note that with the help of the relations (30) and (31), we can have a control of the degree of
accuracy. In fact, we calculate the approximation SD̄

(2,j)

k+1 only if the accuracy obtained using
SD̄

(2,j)

k is not satisfactory. For this we use the following test:

∣∣SD̄
(2,j)

k − SD̄
(2,j)

k−1

∣∣ = 1

vλ+1

∣∣∣∣∣A
(2,j)

k

B
(2,j)

k

− A
(2,j)

k−1

B
(2,j)

k−1

∣∣∣∣∣ � ε (32)

where ε is defined according to the pre-determined degree of accuracy.
The use of equation (31) does not require the computation of binomial coefficients. Note

also that by storing the values of Uk
i and V k

i for k = 0, 1, 2, 3, . . . and i = 0, 1, . . . , k + 1,
one does not need to calculate all values of x2

i+jG(xi+j ) for each order of the SD̄. This led to
a considerable gain in the calculation times.

As we explained in the previous work concerning three-centre nuclear attraction integrals
[4], a numerical and computation problem occurred in the calculation of the approximations
SD̄

(2,j)
n . In some cases, the values of G(xi+j ) are very small (G(xi+j ) → 0). The development

presented in [4], can also be applied to three-centre two-electron Coulomb and hybrid integrals.
The following formulae give a very good approximation of the semi-infinite integrals under
consideration [4]:

SD̄(2,j)
n ≈ 1

vλ+1

Ã
(2,j)
n

B̃
(2,j)
n

(33)

where 


Ã
(2,j)
n = ∑

i∈E

(
n+1
i

)
(1 + i + j)n

F(xi+j )

x2
i+j

B̃
(2,j)
n = ∑

i∈E

(
n+1
i

)
(1 + i + j)n 1

x2
i+j

.
(34)
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Table 7. Evaluation of SD̄
(2,0)
10 K̃(s) using equations (31), (33) and (35) (s = 0.500)a.

i G(xi) SD̄
(2,0)
10 (31) SD̄

(2,0)
10 (33) SD̄

(2,0)
10 (35)

0 −0.1833(−40) 0.195 235 2947(−2) 0.195 235 2947(−2)
1 −0.9395(−79) 0.195 235 2947(−2) 0.195 235 2947(−2)
2 −0.7533(−116) 0.195 235 2947(−2) 0.195 235 2947(−2)
3 −0.1819(−152) 0.195 235 2947(−2) 0.195 235 2947(−2) 0.195 235 2947(−2)
4 −0.7986(−189) 0.195 235 2947(−2) 0.195 235 2947(−2) 0.195 235 2947(−2)
5 −0.5108(−225) 0.195 235 2947(−2) 0.195 235 2947(−2) 0.195 235 2947(−2)
6 −0.4231(−261) 0.195 235 2947(−2) 0.195 235 2947(−2) 0.195 235 2947(−2)
7 −0.4233(−297) 0.195 235 2947(−2) 0.195 235 2947(−2) 0.195 235 2947(−2)
8 0.0000(00) NaN 0.195 235 2947(−2) 0.195 235 2947(−2)
9 0.0000(00) NaN 0.195 235 2947(−2) 0.195 235 2947(−2)

a ν = 19/2, nγ = 10, nk = 5, nx = 3, λ = 3, ζs = 2.00, ζ3 = 1.50, ζ4 = 1.00 and R34 = 2.50.

and where E is a subset of I = {0, 1, 2, . . . , n + 1} defined by

E = {k ∈ I such that G(xk+j ) → 0}.
In the most cases where G(xi+j ) → 0 for some values of i, the following formulae can be
used for the computation of SD̄

(2,j)
n [4]:

SD̄(2,j)
n ≈ 1

vλ+1

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/
x2

i+j∑n+1
i=0

(
n+1
i

)
(1 + i + j)n

/
x2

i+j

. (35)

In our algorithm, the above expression is used when the following conditions are satisfied:

R =
∣∣∣∣∣A

(2,j)
n

Ã
(2,j)
n

− B
(2,j)
n

B̃
(2,j)
n

∣∣∣∣∣ � tiny or R̃ =
∣∣∣∣∣ Ã

(2,j)
n

A
(2,j)
n

− B̃
(2,j)
n

B
(2,j)
n

∣∣∣∣∣ � tiny (36)

where ‘tiny’ should be set close to but not identical with the smallest floating point number
that is representable on the computer.

We used equations (31), (33) and (35) for the evaluation of semi-infinite integrals, where
the situation G(xi+j ) is very small for some values of i, occurred (see tables 7 and 8). From
the results listed in these tables, one can easily note that the use of (33) and (35) gives accurate
results.

4. Numerical discussion

The values of the semi-infinite integrals K̃(s) (18) and H̃(s) are obtained with 15 correct
decimals using the infinite series involving the sine function (22), which we sum until
N = nmax (see tables 1, 3 and 5). We also used the infinite series involving the spherical Bessel
function (19) for calculating the values of the semi-infinite integrals (tables 2, 4 and 6). From
these tables, we can note that the semi-infinite series with the sine function converges faster
than the infinite series with the spherical Bessel function.

For the evaluation of the finite integrals involving in equations (22), (19) and (24), we
separate two cases:

When v � 1, we used Gauss–Legendre quadrature of order 20.
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Table 8. Evaluation of SD̄
(2,0)
11 in the case of H̃(s) using equations (31), (33) and (35)

(s = 0.240(−02))a.

i G(xi) SD̄
(2,0)
11 (31) SD̄

(2,0)
11 (33) SD̄

(2,0)
11 (35)

0 −0.6509(−51) 0.138 157 6998(−3) 0.138 157 6998(−3)
1 −0.3213(−82) 0.138 157 6998(−3) 0.138 157 6998(−3)
2 −0.4923(−112) 0.138 157 6998(−3) 0.138 157 6998(−3)
3 −0.2955(−141) 0.138 157 6998(−3) 0.138 157 6998(−3) 0.138 157 6998(−3)
4 −0.3709(−170) 0.138 157 6998(−3) 0.138 157 6998(−3) 0.138 157 6998(−3)
5 −0.7399(−199) 0.138 157 6998(−3) 0.138 157 6998(−3) 0.138 157 6998(−3)
6 −0.2029(−227) 0.138 157 6998(−3) 0.138 157 6998(−3) 0.138 157 6998(−3)
7 −0.7013(−256) 0.138 157 6998(−3) 0.138 157 6998(−3) 0.138 157 6998(−3)
8 −0.2892(−284) 0.138 157 6998(−3) 0.138 157 6998(−3) 0.138 157 6998(−3)
9 −0.1371(−312) NaN 0.138 157 6998(−3) 0.138 157 6998(−3)

10 0.0000(00) NaN 0.138 157 6998(−3) 0.138 157 6998(−3)

a ν = 17/2, nγ = 14, nk = 5, nx = 6, λ = 3, ζs = 3.00, ζ3 = 1.50, ζ4 = 2.00 and R4 = 2.00.

When 10−15 < v < 1, we divided the finite interval [xi−1, xi] into M subintervals, where
M = min(v−2, 100). The finite integral

∫ xi

xi−1
f (t) dt can be re-written as

∫ xi

xi−1

f (t) dt =
M∑

k=1

∫ x̃k

x̃k−1

f (t) dt

where x̃0 = xi−1, x̃M = xi and for k = 1, 2, . . . , M − 1:

x̃k = xi−1 + k
xi − xi−1

M
.

For the evaluation of each finite integral involving in the above finite sum, we used Gauss–
Legendre quadrature of order 20.

The value of M was determined after a series of numerical tests on different values of v.
In the case of three-centre nuclear attraction integrals over B functions, it was sufficient

to divide the intervals [xi−1, xi] into M ′ subintervals, where M ′ = min(v−1, 100). This is
due to the fact that the term 1

(ζ 2
s +x2)nk

occurs in the expression of the three-centre two-electron
Coulomb and hybrid integrals and not in the three-centre nuclear attraction integrals.

For the numerical evaluation of Gaunt coefficients which occur in the complete expression
of the three-centre two-electron Coulomb and hybrid integrals over B functions (17), we used
the subroutine GAUNT.F developed by Weniger and Steinborn [35]. The spherical harmonics
Ym

l (θ, ϕ) are computed using the recurrence formulae presented in [35].
Tables 1 and 3 contain values with 15 correct decimals of the semi-infinite integrals K̃(s)

(21) obtained using the infinite series with the simple sine function. These values are obtained
for s = 0.24 × 10−2 (close to 0) and s = 0.998 (close to 1).

Tables 2 and 4 contain values of the semi-infinite integrals K̃(s) obtained using the infinite
series with the spherical Bessel function (K̃(s)a) and values obtained using SD̄(2,0)

n with the
recurrence relations (K̃(s)b). The value of ε was set to 10−10. The errors listed in these two
tables are given by

Error a = |K̃(s)nmax − K̃(s)a| and Error b = |K̃(s)nmax − K̃(s)b|.
Table 5 contains values with 15 correct decimals of the semi-infinite integrals H̃(s) obtained
using the infinite series with the simple sine function. These values are obtained for s = 0.998
(close to 1).
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Table 9. Three-centre two-electron Coulomb and hybrid integrals over STFs. Values obtained
with the H2O.

Integrala Valuesa Valuesb Valuesc

〈1sO1sO |1sH1 1sH2 〉 0.166 733 423(0) 0.166 733 529(0) 0.166 733 320(0)
〈1sO2sO |1sH1 1sH2 〉 0.336 797 277(−1) 0.336 797 499(−1) 0.336 797 078(−1)
〈1sO2pO

z |1sH1 1sH2 〉 0.153 901 824(−2) 0.153 901 948(−2) 0.153 901 856(−2)
〈2sO2sO |1sH1 1sH2 〉 0.145 439 173(0) 0.145 439 265(0) 0.145 439 113(0)
〈2pO

z 2pO
z |1sH1 1sH2 〉 0.134 763 478(0) 0.134 763 562(0) 0.134 763 449(0)

〈2pO
−12pO

−1|1sH1 1sH2 〉 0.128 387 519(0) 0.128 387 598(0) 0.128 387 564(0)
〈2pO

+12pO
−1|1sH1 1sH2 〉 −0.166 645 716(−2) −0.166 645 661(−2) −0.166 645 564(−2)

〈1sH1 1sH1 |1sH2 2sO 〉 0.218 488 995(0) 0.218 488 806(0) 0.218 488 712(0)
〈1sH1 1sH1 |1sH2 2pO

z 〉 0.157 272 684(0) 0.157 272 410(0) 0.157 272 721(0)
〈1sH1 1sH1 |1sH2 2pO

+1〉 −0.846 278 918(−1) −0.846 277 865(−1) −0.846 278 181(0)

〈1sO1sO |1sO1sH1 〉 0.175 630 427(0) 0.175 623 400(0) 0.175 622 910(0)
〈2sO1sO |1sO1sH1 〉 0.265 463 467(−1) 0.265 463 901(−1) 0.265 463 451(−1)
〈2pO

z 1sO |2pO
z 1sH1 〉 0.528 462 478(−2) 0.528 462 440(−2) 0.528 461 987(−2)

〈2pO
+11sO |2pO

z 1sH1 〉 0.883 960 240(−3) 0.883 959 816(−3) 0.883 960 178(−3)
〈1sO1sO |2pO

z 1sH1 〉 0.195 970 416(0) 0.195 970 361(0) 0.195 970 464(0)
〈1sO1sO |2pO

+11sH1 〉 0.180 590 559(0) 0.180 590 518(0) 0.180 590 369(0)
〈1sH1 1sH1 |1sH1 1sO 〉 0.307 861 444(−1) 0.307 828 194(−1) 0.307 860 694(−1)
〈1sH1 1sH1 |1sH1 2sO 〉 0.323 596 407(0) 0.323 596 486(0) 0.323 596 003(0)
〈1sH1 1sH1 |1sH1 2pO

z 〉 0.258 864 903(0) 0.258 864 924(0) 0.258 864 993(0)
〈1sH1 1sH1 |1sH1 2pO

−1〉 0.238 549 056(0) 0.238 549 044(0) 0.238 548 823(0)

a The abbreviations 2p+1 and 2p−1 refer to the Slater functions defined by the quantum numbers:
(n = 2, l = 1, m = 1) and (n = 2, l = 1, m = −1). Results obtained with the following
geometry (spherical coordinates) : O(0, 0◦, 0◦), H1(1.810, 52.5◦, 0◦) and H2(1.810, 52.5◦, 180◦).
ζO

1s = 7.670, ζO
2s = 2.09, ζO

2pz
= ζO

2p±1
= 1.5 and ζH

1s = 1.21. Valuesa: obtained using the

SD̄ with the recurrence relations. The value of epsilon (equation (32)) was set to 10−15. The
finite outer s integrals and all the finite integrals which occur in the expression of SD̄ are evaluated
using Gauss–Legendre quadrature of order 48. Valuesb: obtained using Slater-type orbital package
(STOP) [27]. Valuesc: obtained using the code (ADGGSTNGINT) developed by Rico et al [28].

Table 6 contains values of the semi-infinite integrals H̃(s) obtained using the infinite
series with the spherical Bessel function (H̃(s)a) and values obtained using SD̄(2,0)

n with the
recurrence relations (H̃(s)b). The value of ε was set to 10−10. The errors listed in this table
are given by

Errora = |H̃(s)nmax − H̃(s)a| and Errorb = |H̃(s)nmax − H̃(s)b|.
The calculation times listed in tables 1–6 are in milliseconds.
Tables 7 and 8 contain values obtained for SD̄(2,0)

n obtained using equations (31), (33) and
(35). From these two tables, we can note that when values of G(xi+j ) are very small, the use
of equations (33) and (35) gives accurate results. From these tables we can note that SD̄

(2,0)
10

and SD̄
(2,0)
11 from equation (31) does not give any values, due to the fact that G(x8) and G(x9)

in table 7 and G(x9) and G(x10) in table 8 are considered as 0 by the machine.
Table 9 contains values of the three-centre two-electron Coulomb and hybrid integrals over

STFs. These values are obtained with the planar molecule H2O. Valuesa are obtained using
the new algorithm. Valuesb were obtained with STOP developed by Bouferguene et al [27]
and Valuesc were obtained with a code ‘ADGGSTNGINT’, using STOnG (STFs expressed as
a combination of n GTFs), developed by Rico et al [28].

Table 10 contains values of the three-centre two-electron Coulomb and hybrid integrals
over STFs. These values are obtained with the planar molecule C2H4. Valuesa are obtained
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Table 10. Three-centre two-electron and hybrid integrals over STFs. Values obtained with the
C2H4 moleculea.

Integral Valuesa Valuesb Valuesc

〈1sC1
1sC1 |1sH 1sC2 〉 0.302 190 537(−1) 0.302 168 365(−1) 0.302 189 670(−1)

〈1sC1
1sC1 |1sH 2sC2 〉 0.193 446 397(0) 0.193 452 377(0) 0.193 446 239(0)

〈1sC1
1sC1 |1sH 2pC2

z 〉 0.245 171 858(−1) 0.244 921 199(−1) 0.245 167 332(−1)

〈2sC1
1sC1 |1sH 1sC2 〉 0.495 876 724(−2) 0.495 840 359(−2) 0.495 875 301(−2)

〈2sC1
2sC1 |1sH 1sC2 〉 0.291 659 320(−1) 0.291 645 767(−1) 0.291 658 478(−1)

〈2pC1

z 2pC1

z |1sH 2sC2 〉 0.199 079 760(0) 0.199 087 973(0) 0.199 079 574(0)

〈2pC1

z 2pC1

z |1sH 2pC2

z 〉 0.332 481 668(−1) 0.332 174 598(−1) 0.332 476 978(−1)

〈2pC1

z 2pC1

z |1sH 2pC2

+1 〉 0.900 918 656(−1) 0.901 008 177(−1) 0.900 920 232(−1)

〈1sC1
1sC1 |1sC1

1sC2 〉 0.466 182 869(−4) 0.465 105 483(−4) 0.466 178 688(−4)

〈1sC1
1sC1 |1sC1

2sC2 〉 0.136 049 511(0) 0.136 895 061(0) 0.136 951 019(0)

〈1sC1
1sC1 |1sC1

2pC2

z 〉 −0.194 543 772(0) −0.194 445 010(0) −0.194 543 218(0)

〈1sC1
1sC1 |2pC1

z 2pC2

z 〉 −0.235 395 380(0) −0.235 380 213(0) −0.235 395 379(0)

〈1sC1
1sC1 |2pC1

+1 2pC2

+1 0.122 440 444(0) 0.122 064 158(0) 0.122 115 515(0)

〈2pC1

z 2pC1

z |2pC1

z 2pC2

z 〉 −0.209 119 826(0) −0.209 120 100(0) −0.209 119 826(0)

〈2pC1

z 2pC1

z |2pC1

+1 2pC2

+1 〉 0.130 266 320(0) 0.130 211 418(0) 0.130 266 320(0)

〈2pC1

+1 2pC1

+1 |2pC1

+1 2pC2

+1 〉 0.127 717 050(0) 0.127 662 095(00) 0.133 128 244(0)

a Results obtained with the following geometry (cartesian coordinates): C1(0, 0, 0), C2(0, 0, 2.551 16) and
H(−1.751 13, 0, 3.562 17). ζC

1s = 5.636 105, ζC
2s = 1.346 562, ζC

2pz
= ζC

2p±1
= 1.581 274 and ζH

1s = 1.0. Valuesa are

obtained using the SD̄ with the recurrence relations. The value of epsilon (equation (32)) was set to 10−15. The finite
outer s integrals and all the finite integrals which occur in the expression of SD̄ are evaluated using Gauss–Legendre
quadrature of order 48. Valuesb are obtained using Slater-type orbital package (STOP) [27]. Valuesc are obtained
using the code (ADGGSTNGINT) developed by Rico et al [28].

using the new algorithm. Valuesb were obtained with STOP. Valuesc were obtained with
ADGGSTNGINT.

For the calculation presented in tables 9 and 10, we used equation (4) to express the
integrals over STFs as finite linear combinations of integrals over B functions.

From tables 9 and 10, one can note that the values obtained using the new algorithm are
in agreement with those obtained using STOP and ADGGSTNGINT.

All the calculations were performed on a PC-Workstation Intel Xeon Processor 2.4 GHz.

5. Conclusion

Three-centre two-electron Coulomb and hybrid integrals over STFs are expressed as finite
linear combination of integrals over the so-called B functions in order to apply the
Fourier transform method, and then to develop analytic expressions for the integrals under
consideration. These analytic expressions turned out very difficult to evaluate to because of
the presence of highly semi-infinite integrals involving spherical Bessel functions and not a
simple trigonometric function.

It was shown that these semi-infinite integrals are suitable to apply the SD̄ method, which
consists in transforming the semi-infinite integrals involving Bessel functions into semi-infinite
integrals involving the simple sine function, and on applying the non-linear D̄ with a second-
order differential equation. The use of Cramer’s rule was made possible with the help of
practical properties of the sine function.
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The algorithm developed in the present work is now shown very efficient, great
simplifications are obtained with the help of the recurrence relations satisfied by the terms
that occur in the expression of the approximations SD̄

(2,j)
n . The numerical and computational

study showed that the use of SD̄ combined with quadrature rules can also give accurate results
in certain regions corresponding to the case where the value of v is very small.

The numerical results show this approach yields values for these integrals to a pre-
determined high accuracy and with unprecedented rapidity.

Numerical results are obtained for three-centre two-electron Coulomb and hybrid integrals
over STFs with H2O and C2H4 molecules. All are precise and very rapid. These results confirm
that this SD̄ transformation represents another most significant advance on the road to routine
precise and rapid evaluation of these molecular electronic integrals.
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